转发:数学与数据科学应用研究所系列报告:Validity of the hyperbolic Whitham modulation equations in Sobolev spaces

publisher:李君钰update:2023-04-21views:10

Validity of the hyperbolic Whitham modulation equations in Sobolev spaces


报告人:Anna Kostianko 研究员(英国帝国理工学院)

报告题目:Validity of the hyperbolic Whitham modulation equations in Sobolev spaces

报告时间2023.4.24  (周一),10:35-11:15  地点:励学楼B219

邀请人:李晓军


摘要:

It is proved that modulation in time and space of periodic wave trains, of the defocussing nonlinear Schrödinger equation, can be approximated by solutions of the Whitham modulation equations, in the hyperbolic case, on a natural time scale. The error estimates are based on existence, uniqueness, and energy arguments, in Sobolev spaces on the real line. An essential part of the proof is the inclusion of higher-order corrections to Whitham theory, and concomitant higher-order energy estimates.

报告人简介

Anna Kostianko: 英国帝国理工学院研究员,于2013 -2017年在英国萨里大学数学系攻读博士,获哲学博士学位,师从Sergey Zelik教授。主要从事无穷维动力系统惯性流形的研究,合作者包括E.Titi、C.Chepyzhov等本领域的国际著名学者,在惯性流形领域作出了出色的工作。在Math. Ann.、Anal. PDE、SIAM J. Math. Anal.、J. Diff. Equ.、Nonlinearity等国际等知名学术期刊上发表学术论文十余篇。


  • 河海大学官方微信
  • 河海大学国际教育 学院官方微信