搜索 导航

转发:数学与数据科学应用研究所系列报告:Statistical solutions and Liouville theorem for the Klein-Gordon-Schrödinger equations

Publisher:李君钰Date:2023-04-21Views:10

Statistical solutions and Liouville theorem for the Klein-Gordon-Schrödinger equations


报告人:   赵才地 教授(温州大学)

报告题目:Statistical solutions and Liouville theorem for the Klein-Gordon-Schrödinger equations

报告时间2023.4.24  (周一),9:40-10:20  地点:励学楼B219

邀请人:   李晓军


  

摘要:

In this talk, we investigate the system of Schrödinger and Klein-Gordon equations with Yukawa coupling. We first prove the existence of pullback attractor and construct a family of invariant Borel probability measures. Then we establish that this family of probability measures satisfies a Liouville type theorem and is indeed a statistical solution for the coupling equations. Further, we reveal that the invariant property of the statistical solution is a particular situation of the Liouville type theorem.

报告人简介

赵才地: 温州大学瓯江特聘教授,温州市科技创新领军人才,浙江省新世纪151人才,2008年博士毕业于上海大学。主要从事无穷维动力系统与非线性偏微分方程方面的研究工作。 应用无穷维动力系统的途径研究非线性发展方程的不变测度和统计解,在一些典型偏微分方程的统计解、轨道统计解,以及随机偏微分方程的不变样本测度等方面取得一些成果,发表学术论文50余篇,多篇论文发表在Adv. Diff. Equa.,Nonlinearity,J. Diff. Equ., 《中国科学》等期刊上,主持完成国家自然科学基金面上项目2项,曾获浙江省自然科学三等奖。