The Art of Modelling

With acknowledgements to:

> Southanampton

My Background

Civil Engineer with 40 years experience

- Graduated from Exeter in 1975
- Joined Sir William Halcrow \& Partners (1975-1993)
- Worked on a variety of infrastructure projects; mainly marine and coastal
- Set up coastal numerical modelling group
- Chief Coastal Engineer
- Managing Director ABP Marine Environmental Research (1993-2003)
- Developed physical and numerical modelling capability
- Focussed on estuary research
- Research Director at HR Wallingford (2006-2014)
- Developed research strategy
- International research
- Professor at University of Southampton, Visitor at SKLEC and NHRI
- Ocean and Earth Sciences
- Fellow of the Royal Academy of Engineers (FREng)

Where I live

Winchester

- About 120 km from London
- Originally the Capital of England

The Art of Modelling - Outline

- What is modelling?
- Problem solving
- The Conceptual Model
- Defining the problem
- Model abstraction
- Types of Model
- Synthesis
- Communication

What do we need to be able to do?

- What are we trying to achieve through modelling?
> Interpreting and interpolating data
> Simulate dynamic behaviour of processes and systems
> Predict and forecast dynamic change
> Formalise knowledge, test ideas, solve problems
> Understand and communicate
* Behaviour, processes, interactions in complex systems
> Provide evidence to support decision making
- Robust > credible, transferable, reliable, objective and well founded
* Uncertainties identified and ideally quantified

How to Solve it

- Understand the problem
> What is unknown, what are the data, what are the conditions/constraints?
- Devise a plan
> Is there a related problem, look at the unknown, could you restate the problem?
- Carry out the plan
> Check each step. Is each step correct? Can you prove it is correct?
- Look back
> Check the result and argument. Can you derive the result differently as a cross-check?

After George Polya

Scientific Method

- Understand the problem
> Identify unsatisfactory explanation in existing theory or data
- Devise a plan
> Define a hypothesis and decide how to test the hypothesis
- Implement the plan
> Carry out the tests or experiments and critically examine the findings
- Look back
> Review the findings against other work and revise or update the theory

Development Projects

- Understand the problem
> Identify the aims and objectives of the project
- Devise a plan
> Scope the approach, using existing information and conceptual models of system
- Implement the plan
> Carry out the work programme, including data collection, analysis, testing, modelling, sensitivity tests and predictions
- Look back
> Synthesis of all available evidence, cross-check results and test that proposed solution is robust

Comparison of frameworks

Mathematics	Research	Projects
- Define problem - Devise plan - Implement plan - Look back	- Unsatisfactory explanation - Hypothesis to be tested - Criticism (testing) - Review (update theory)	- Issues to be examined - Scope approach - Work programme - Synthesis
Solution	Accepted theory	Conclusions/Solution

Stages to Solve a Problem

Step 1 - Define Problem

- Develop a good understanding of the problem
- Build on existing knowledge
- Find out about the context (social, political, economic, research)

Output:

- Agreed definition of the problem
> Hypothesis to be tested; or
> Project aims and objectives, or performance targets

Step 2 - Devise a Plan

- Plan will draw on:
> what data already exists;
> previous research or projects; and the
> measurements, methods of analysis and modelling techniques available
- Constrained by:
> Timescale, budget available, existing knowledge and data availability
Output:
> Work programme, milestones and targets
Often useful to develop a "Conceptual Model" at this stage as a framework to guide the development of the work plan and the subsequent synthesis of the results

Step 3 - Implement the Plan

- Develop the Solution

> Need to decide how to represent, or idealise, the real world "abstraction"
> Collect supporting field or laboratory data
> Test the solution is representative and reliable
> Explore uncertainties
Output: Tested means of solving the problem

- Apply the Solution
> Replication of known results, or calibration and validation
> Sensitivity tests and "What if" scenarios
Output: Results for the intended application
> Should be supported with information on assumptions, simplifications, sensitivities and assessment of uncertainties

Step 4 - Synthesis

Simply presenting the output of a data analysis, or series of model runs, is generally not very informative

- Interpret the Results
> check that each step is correct and that the final results make sense;
> extend understanding by answering specific questions;
> use conceptual model to refine understanding in the light of the results
Output: answers to the problem posed, with clear lines of evidence
- Communicate the findings:
> Tell a story to build a clear picture of the evidence and conclusions
Output: clear and concise summary of the findings

Stages to Solve a Problem

Conceptual Model

- Variety of Methods and Models can be formulated using many sources of information, such as:
> Data (observed, synthetic, Big data, Fuzzy, folk-lore)
- Physical and numerical model results
> Analysis and interpretation of literature
Each will provide information on the problem
- Conceptual Model could be articulated as:
- Synthesis of what is known

ح Accepted behavioural model or description
Provides the framework for a research hypothesis or problem definition (aims and objectives)

Conceptual Model

- Descriptive summary of behaviour:
> Captures complexity of interactions
> Covers range of space \& time scales
> Identifies state changes:
* Dynamic equilibrium or steady state; Transitional behaviour; Catastrophic switches
> Highlights sensitivity to change
) natural and imposed
- Simple enough to communicate clearly
- Will be limited by current understanding

Conceptual Model

 (D)Producing a conceptual model involves.....
Using various sources of data and existing knowledge to develop an understanding of how the system being studied behaves

This needs to be revised (or reformulated) as new data, experimental results, and modelling results become available.

Difficulties in developing a conceptual model

- Complex interactions:
> System will evolve in response to a variety of forces over different time and space scales
> Resolving all responses is complex, especially when system is non-linear
- Limits of current understanding:
> Methods and models are not available to predict all aspects of coastal processes
> Uncertainties and errors in data and model results may affect our current understanding

Types of Conceptual Model

Basic Conceptual Model

> Simple sketch of linkages and feedbacks
> Discussion of likely response to change (usually perturbations to the system)

Fully Developed Conceptual Model

> All components of the system represented
> Key process and feedback controls identified
> Key pathways for mass and energy identified
> Likely system responses understood
> All uncertainties in current understanding highlighted

Flooding Foresight Conceptual Model

Source - Pathway - Receptor

Pathway
(e.g. defence)

Receptor

(e.g. people in the floodplain)

Pathway - defence, defence system, flood plain

Other sources - rainfall, drainage issues

Receptors - property,
people environment

Stages to Solve a Problem

1. Define Problem

-What is the context or background to the problem?

- What is unknown, what are the data, what are the conditions/constraints?
- Is the problem similar to other problems that have already been solved?
For research:
> What are the science questions?
> What is the hypothesis to be tested?
For projects:
> What are the client requirements (aims and objectives)?
> What are the performance targets?
> What are the constraints (budget, timescale, regulations, etc)?

Process of Induction
 'Black-box’ modelling

Black swans on a UK beach - May 2016

Black Box or Data Driven Models

Hypothesis led deduction

Reasoning from one or more statements to reach a logically certain conclusion

Existing understanding

Generally accepted approach

1. Observation gathering and ordering of data
2. Pattern detection, regularities and generalisation

sometimes called induction

3. Development of explanatory theories
4. Deduction of hypotheses to test theories
5. Testing of the hypotheses
6. Support or adjustment of theory

After Coolican, 1996

Example - Research

- Problem

> Sediment exchange at the mouth of an estuary is complex because of the interaction of tides, river and waves.
> Understanding the behaviour is important if safe navigation is to be maintained

- Science question
> What are the key drivers of annual sediment movement in the North Passage of the Yangtze?
- Hypothesis
> Tidal processes are the dominant mechanism of sediment transport and waves, river flows and density driven currents are all of secondary importance

Example - Research

- Problem

Dominant or main processes (NOT ALL)

- Science question
> What are the key drivers if annual sediment movement in the North Passage of the Yangtze?
- Hypothesis
> Tidal processes are the Space Scale transport and waves, river flows and density driven currents are all of secondary importance

Example - Research

- Problem
- Sediment exchange at the mouth of an estuary is complex becauspafthnintonation oftidna nivan and wave
> Unders To be able to write this hypothesis one to be m needs an understanding of likely behaviour
- Science
> What a Hence the need for a conceptual model
North Passage of he Yangtze?
- Hypothesis
> Tidal processes are the dominant mechanism of sediment transport and waves, river flows and density driven currents are all of secondary importance

Example - Project

- Problem

> Major storms cause sever flooding at the coast
> The flood hazard is increasing as a result of climate change
> This poses an increasing risk to people and property

- Design question
> How can we reduce the flood risk to an acceptable level (say the 1 in 100 year probability of damage) for the town of Jinshan over the next 50 years?
- Project aim (what the client wants to know)
> The level of risk will be acceptable with the proposed new defences (or management plan)
> Work can be completed within the time and budget available

Example - Project

- Problem
> Major storms cause cever flonding at the coast
$>$ The flood hazard Focus of a result of climate change
> This poses an inc interest ople and property
- Design question
> How can we reduce the flood risk to an acceptable level (say the 1 in 100 year probability of dan Time Scale Jinshan over the next 50 years?
- Project aim (what the client wants to know) Space Scale will be acceptable with the proposed new utrutuco (or rurahagement plan)
> Work can be completed within the time and budget available

Stages to Solve a Problem

Abstraction - from Real World to Model

From "real world" to model

Time \& Space Scales

System Levels, Elements \& Flows

element influenced by higher level
element at level shown
element that is a sub-system
flow

Example of Abstraction

- Possible levels for the case of an estuary

Higher level:	Global tidal dynamics and meteorological forcing operate at much larger spatial scales and would be typically prescribed as boundary conditions for the model.
Level of interest:	Estuary system to predict water levels, flows and pollutant dispersion
Lower level:	Variations in the character of the bed represented by a "simplification" in the form of a friction factor and turbulence in the flow structure represented by some suitable simplified formulation (turbulence closure).

Types of Model

Some types of model

- Qualitative
> Conceptual
. Descriptive
Behavioural
> Frameworks
© DPSIR:
Driver-Pressure-State-Impact-Response
S-P-R
Source-Pathway-Receptor
> Influence \& System Diagrams

Behavioural Conceptual Model: Flood/Ebb Dominance in a Tidal Inlet

- Sea level rise

- deepen channel
- increase hydraulic depth
- increase flood dominance
- raise intertidal
- reduce hydraulic depth
- return to ebb dominance

High Water Mark

High Water Mark

Framework: Source-Pathway-Receptor

Pathway
(e.g. defence)

Receptor

(e.g. people in the floodplain)

Influence \& System diagrams

Influence diagram

Stock and flow model

Influence diagram, with causal loops, used as a prelude to 'stock and flow' simulation for a simple ecosystem model (modified from Smith, 2000).

There is, as yet, no way to fully automate the transition from influence diagram into a set of model equations (Wolstenholme, 1999).

From (French \& Burningham, 2007)

System diagram for a coastal embayment

Fault Trees, Event Trees, Cause-Consequence Trees

Fault Tree

Failure

Event Tree

Cause-Consequence Tree

Some types of model

- Qualitative
> Conceptual
Descriptive
- Behavioural
> Frameworks
DPSIR:
Driver-Pressure-State-Impact-Response
S-P-R
Source-Pathway-Receptor
> Influence \& System Diagrams
- Quantitative
> Empirical
> Behavioural
> Kinematic
> I-P-O (system models)
> Dynamic or Process
> Statistical/Probabilistic

Quantitative Empirical Model

Figure 5 | Symbolic representation of a watershed basin as a system to be modelled.

See paper:
Of data and models, Cunge, 2003

Figure 6 Data-driven modelling-symbolic representation.

Quantitative Behavioural Model

Kinematic Model - Sediment Trends Analysis

51 : 27-Nov-17

Input-Process-Output (System models)

Components of a system

Representations of Relationships between Elements

Complex multi-process system

Estuary System Model

Aggregated Scale Morphological Interaction between a Tidal inlet and the Adjacent coast

Model volume of sediment exchanges between elements

Dynamic or Process Model: Flow, Sediment Transport, etc

Probabilistic Model of flooding Using Source-Pathway-Receptor Framework

Pathway
 (e.g. defence)

Receptor
(e.g. people in the floodplain)

Source - river, estuary, coast

Pathway-defence, defence system, flood plain

Other sources - rainfall, drainage issues

Receptors - property, people environment

Modelling methods

- Physical
> Numerical
> Rule based (agent)
- Genetic algorithm
- Network, loop, Boolean
- Monte Carlo simulation
> Fault, Event and Cause-Consequence
> Neural network
> Fuzzy

Synthesis - making sense of it all

Assumptions and Simplifications

- Theoretical idealisation (eg. Navier-Stokes eqns)
- Simplifications (eg. incompressible fluid, 1 or 2-D)
- Phenomenological parameterisation (eg. turbulence closure)
- Discretisation in space and time (model and measurements)
- Adequacy of boundary conditions and constraints (eg. geology in morphological model)
=> Errors in model and measurements

Uncertainty

- Natural variability
> refers to the randomness observed in nature
${ }^{2}$ referred to as: Aleatory (meaning to 'gamble'); External; Inherent; Objective; Random; Stochastic; Irreducible; Fundamental; and Real World uncertainty
- Knowledge uncertainty
> refers to the state of knowledge of a physical system and our ability to measure and model it
r referred to as: Epistemic (meaning 'knowledge'); Functional; Internal; Subjective uncertainty; and Incompleteness

The limits to "completeness"

Model Performance

Root Mean Square (RMS) error

RMS_absolute $($ obs, mod $\left.):=\sqrt{\text { mean }\left[(\text { obs }- \text { mod })^{2}\right.}\right]$
RMS_relative $($ obs , mod $):=\sqrt{\text { mean }\left(\text { obs }^{2}\right)}-\sqrt{\operatorname{mean}\left(\bmod ^{2}\right)}$

‘Good Modelling Practice’ paradigm

Data Driven or Black

Box Approach

- Set-up model

Physics-Based Deterministic
Model Approach

- Calibrate - using model parameters that are invariant in the proposed application
- Validate - ü • Better measure of uncertainty. If error
- Run model < acceptable range - apply model
> acceptable range - investigate reasons
$>$ Sensitivity analysis and synthesis to reduce uncertainty

Example of Pedigree Score Guide

	Score	Information or data	Theory and Method	Peer Acceptance	Consensus
	4	Comprehensive information with sound data and good quality control	Best available practice and well established theory	Absolute - peer reviewed evidence from research literature.	Accepted as 'an ideal approach.'
	3	Reliable analysis of the available data	Reliable method commonly accepted	High - peer reviewed evidence	Accepted as 'fit for purpose.'
	2	Calculation or estimation of values	Accepted method, partial theory but limited consensus	Medium - some agreement accepting that there are some contradictory views	Some consensus but different 'schools of thought'
	1	Education opinion. Expert view based on limited information	Preliminary method unknown reliability	Low - no agreement	'New approach' un- tested
	0	Non-expert view/guess	Crude speculation - No discernable rigour	None	None - inappropriate use of data/information/ modelling

Pedigree as used by IPCC for AR5 and UK CCRA

High agreement Limited evidence	High agreement Medium evidence	High agreement Robust evidence
	Medium agreement Limited evidence	Medium agreement Medium evidence
Low agreement Limited evidence	Low agreement Medium evidence	Low agreement Robust evidence

Evidence (type, amount, quality, consistency) \longrightarrow

Confidence based on subjective assessment

4	Very high	Comprehensive evidence using the best practice and published in the peer reviewed literature; accepted as a sound approach.
3	High	Reliable analysis and methods, with a strong theoretical basis, subject to peer review and accepted as 'fit for purpose'.
2	Medium	Estimates grounded in theory, using accepted methods and with some agreement.
1	Low	Expert view based on limited information, e.g. anecdotal evidence.
0	Very low	Non-expert opinion, unsubstantiated discussion with no supporting evidence.

Comparison of Alternatives

Pedigree	Method 1	Method 2
Theory	H	L
Data Input	H	L
Peer Acceptance	M	M
Consensus	L	M

Robust Evidence Based Policy

- Credible/valid - sound line of arqument? Line of argument not clear
- Transferable - can the specific be generalised?
- Reliable - can the evidence be depended upon?
- Objective - has residual bias been acknowledged?
- Well founded - have the right question been posed?
- + an assessment of associated uncertainties

Comparison of Alternatives

Pedigree		Method 1		Method 2
	H		L	
Theory	H		L	
Data Input	M		M	
Peer Acceptance	L		M	
Consensus				

| Evidence Base | Method 1 | | Method 2 |
| :--- | :---: | :---: | :---: | :---: |
| | | | M |
| Credible | M | | L |
| Reliable | H | M | |
| Objective | H | L | |
| Well founded | H | L | |
| Transferable | | | |

Process of Synthesis

- Multiple strands of evidence
- Processes reasonably well understood
- Behaviour \& dynamic states less so
- Synthesis should aim to
* differentiate between fact \& interpretation
* test findings against conceptual model
* identify behaviour in transparent way
r recognise uncertainties
- The synthesis should also confirm or amend the conceptual model

Sediment Budget for Humber

River inputs
Deposit to bed

Average tidal flux

The great climate change science scandal

Leaked emails have revealed the unwillingness of climate change scientists to engage in a proper debate with the sceptics who doubt global warming

guardian.co.uk

News Sport Comment Culture Business Money Life \& style I

Environment Climate change

Tibet temperature 'highest since records began' say Chinese climatologists
 Average Tibet temperatures in 2009 increased 1.5C, with rises noted in both winter and summer at 29 monitoring sites

Jonathan Watts, Asia environment correspondent, and agencies guardian.co.uk, Friday 5 February 2010 13.31 GMT Article history

Proposals to build a giant deep-water container port within the proposed New Forest National Park are expected to unleash one of the most bitter planning battles seen in Britain for years.

Proposals to build a giant deep-water container port within the proposed New Forest National Park are expected to unleash one of the most bitter planning battles seen in Britain for years.
Associated British Ports, the biggest ports business in the UK wants to site more than a mile of shipping berths, an array of big cranes and a 500-acre terminal at Dibden Bay on the west side of Southampton Water, to form one of the largest dock areas in Europe, whose 24 -hour operation is expected to generate more than 3,000 heavy lorry journeys a day.
The company says the $£ 600 \mathrm{~m}$, nine-year development is essential to maintain the prosperity of the port of Southampton,

SPONSORED
Ads by Google
Life Cycle Assessment Know your products environmentalimpact? Ful WWW.BureauVeritas.co uk

NHS Organ Donor register
By becoming an Organ donor youcould save a life. Find more here. www.OrganDonation.NHS.ul
Mini Cruises
Southampton
Up To $£ 200$ Off

Space-Time Matrix

Assessment of Change

What or Who to believe?

The world is round?

Pythagoras
Earth goes round the sun?

Copernicus

Galileo

Trust to tell the truth in 2000

Doctors	$\%$
Teachers	89
Clergymen or priests	88
Television news readers	86
The Police	75
The ordinary man or woman in the street	70
Civil servants	58
Trade Union Officials	52
Government Scientists	40
Business leaders	38
Politicians generally	35
Government Ministers	19
Journalists	17

Selective Reporting

"It is the Historian who decides what facts to give the floor to and in what order and context"

E H Carr, Historian

"That's amazing isn't it? - Why is intuition worst than useless when it comes to spotting real coincidences?"

Jack Cohen and Ian Stewart, New Scientist, 1998

Weighing Risks

 (C)

Risk
Low risk
High risk

CARTE FIGURATIVE des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812-1813. Dressée par M. Minard, Insjecteur Général des Ponts et Chaussées en retraite.

Fluid budget of continental plate boundary fault

Estimated fluxes of meteoric, metamorphic and mantle fluids are shown as coloured circles, with the inner and outer circles representing minimum and maximum estimates respectively. The proportion of each end member fluid that constitutes the flux up the Alpine Fault is illustrated as a proportional circle, meteoric water making up $>99 \%$ of the total flux up the Alpine Fault.

The Sediment Budget Concept

- Allows key elements of coastal system to be identified:
> Sources of sediments
> Sediment transport pathways
> Sediment sinks

- Allows controls on sedimentary processes to be identified 81

Sediment Pathway Schematic

 (C)

Hope's Nose, Torquay to Holcombe: Sediment Transport

The Art of Modelling

"The art of modelling

 is to develop new insights or understandingthat you did not have at the outset"

"Tides"

There are some coasts
Where the sea comes in spectacularly
Throwing itself up gullies, challenging cliffs, Filling the harbours with great swirls and flourish, A theatrical event that people gather for Curtain up twice a day. You need to know The hour of its starting, you have to be on guard.

There are other places
Places where you do not really notice
The gradual stretch of the fertile silk of water
No gurgling or dashings here, no froth no pounding
Only at some point the echo may sound different And looking by chance one sees 'Oh the tide is in'.
"Tides" by Jenny Joseph, Selected Poems, 1992

